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Abstract-A model is developed to describe the behaviour of particles in air streams. The equations of 
particle flow and heat transfer are given in dimensionless form. Two practical applications for suspension 
flows are solved : (a) the flow past a temperature step and (b) the injection of hot particles in a pipe carrying 
a gas. In both cases instantaneous velocity and temperature differences for the gas and solids are calculated 
and the effect of several dimensionless groups (such as Reynolds numbers, loading and dimension ratios) 
on these two quantities is determined. It was found that non-equilibrium effects are accentuated when 

bigger particles are in the mixture. 

INTRODUCTION 

THE SUBJECT of heat transfer in suspension flows was 
examined experimentally in the 196Os, when sus- 
pensions were considered for heat transfer aug- 
mentation. During that time the experimental work 
by Farbar and co-workers [l, 21, Tien and Quan [3], 
Schludersberg et al. [4], Wachtell et al. [5] and Dan- 
ziger [6], among others, provided the experimental 
data and design correlations for the convective 
coefficient (film coefficient) of a suspension. A review 
of the experimental data and of the correlations that 

have resulted is given by Pfeffer et al. [7]. An analytical 
study by Tien [8] for homogeneous suspensions with 
low solids content and more recently studies by 
Ozbelge and Somer [9] and Michaelides [lo] have 
added to the knowledge of homogeneous suspensions. 

When non-equilibrium flows are concerned, a study 
by Whalley et al. [l l] treats the subject of droplet 
flows in a stream. Very little is known about the flow of 
suspensions with hydrodynamic and thermodynamic 
non-equilibrium. Experimental data are non-existent 
because of the difficulty of measuring the temperature 
of solids and we could not find any analytical 
approach to the subject other than the treatment of 
homogeneous suspensions, which precludes non-equi- 
librium. This, despite the fact that heat transfer in 
suspensions is very important in pneumatic convey- 
ing, drying of solids and chemical flows with catalysts. 

This work aims at the development of a model, 
which describes the behaviour of solid particles in 
gaseous streams when the velocities and temperatures 
of the two phases are considerably different. The equa- 
tions developed are solved for the following cases : (a) 
pipe flow of particles with a gas, through a tem- 
perature step on the wall temperature and (b) the 

t Permanent address : Department of Mechanical Engin- 
eering, University of Delaware, Newark, DE 19711, U.S.A. 

injection of hot particles in a colder pipeline carrying 
a gas. 

The emphasis of this study is in the mechanical and 

thermal non-equilibrium that exists between the two 
phases. The temperatures and velocities of the two 
phases are obtained and parameters that affect the 
lack of equilibrium are pointed out. A limited number 
of cases where heat transfer from the wall to the sus- 
pension is calculated are also presented in this study. 

THE SET OF EQUATIONS FOR A SUSPENSION 

A one-dimensional model is developed for the flow 
of the air-particles mixture in a cylindrical domain of 
diameter D. The diameter of the particles is assumed 
to be low enough (d/D < 0.05) for the particles to be 
considered much smaller than the pipe diameter. Also 
the Reynolds numbers of the flow are high enough for 
the particles to be in a state of nearly homogeneous 
suspension within the gas. The concentration of the 
suspension is always low (< 0.06), which ensures that 
interparticle effects are negligible. The temperature 
differences considered are low enough for radiation 
not to play an important role in the heat transfer 
between the particles, the gas and the pipe walls. 

Under these conditions the conservation equations 

may be written as follows. 

Continuity equations for gas and particles 

and 

~(Ntn&J,) = - ;Es (lb) 

where Es is the sublimation rate of the particles ex- 
pressed per unit area of the pipe wall. For particles 
which do not split or agglomerate N is constant. Then 
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the last equation together with the momentum equa- 
tion for a particle will yield the rate of change of the 
particle radius (dr/dx) when sublimation or conden- 
sation occurs. It is evident that in the absence of phase 
change the continuity equations are reduced to two 
conservation of species equations. 

The momentum equation for the particles 
The complete momentum equation for the solid 

particles is actually a force balance, which in its com- 
plete form may be written as 

4 
-aa’p 
3 

s 
dup dUP -~ 

’ dt dt 

x 0 &t-t’) 
dt’+ im’(p,-_p,)g. (24 

The left-hand side of equation (2a) represents the 
acceleration of the particle. Of the terms on the right- 
hand side the first accounts for the viscous interaction 
with the fluid ; the second term is due to the pressure 
gradient and is usually very small ; the third term 
represents the ‘added mass’ force and accounts for 
the volume of fluid the particle carries with it as it 
accelerates (this is about one-half the volume of the 
particle) ; the fourth term is the Basset force, which 
represents the influence of the history of motion of 
the particle in its trajectory and is usually very small ; 
finally the last term is the force due to the gravitational 
field. 

When the density of the particles is much higher 
than the fluid density (pp/pg >> l), the second, third 
and fourth terms on the right-hand side become negli- 
gibly small. This is usually the case with gas-solid 
flows where the density ratio is of the order of 1000. 
Thus, for such flows the equation of motion for the 
particle reduces to 

4 d U, 4 
5na3p,7 = F,,+ jaa’p,g. W) 

The viscous drag force F,, is given by an empirical 
relation as follows : 

F,, = kcnna’p,lU,-U,I(U,-Up) (3) 

where the coefficient cn is usually given as a function 
of the Reynolds number for the particle, Rep 

cD = ,'r (Rep) 
P 

where the function f (Rep) approaches asymptotically 
the value 1 as Re, becomes very small (Stokes law). 
Boothroyd [12] and Sharma and Crowe [13] suggest 

the following expression to be used with small to 
medium size particles : 

24 
CD = me (1 + ReF’j8’). 

P 

This expression has been used successfully in the past 
for the prediction of particle trajectories and has been 
verified by comparison with experimental data [12]. 
The Reynolds number for the particles, which appears 
in the above equations is 

Re 

P 
= 2alU,-Uh% 

P . 
(5) 

In pipe flows the momentum equation for the gas 
is reduced to a pressure loss equation, which may be 
taken into account with an appropriate friction factor 
[12] as follows: 

dP 1 
z = ,,fP& 

The energy equations 
For the applications examined in this paper, con- 

vection is the predominant mode of heat transfer 
between the fluid and the wall and also between the 
fluid and the particles. The fluid interacts thermally 
with both the pipe and the particles. However, the 
particles interact only with the fluid. This happens in 
suspension flows for two reasons: first, the time of 
collisions of particles with the walls of the pipe are 
extremely small for any thermal interaction to take 
place during this time. Second, the mixtures con- 
sidered here are of small concentrations for an 
appreciable amount of particles to be in close prox- 
imity to the wall of the pipe, where any thermal inter- 
action has to take place. The relatively low tem- 
perature differences considered here exclude the 
possibility of radiation interaction as mentioned 
before and the absence of any phase change is 
assumed. 

The energy equation for the particles may be 
reduced to an expression for the change of tem- 
perature of the particles 

dTp_ 4nhpa2(T,-T,) 3h,(T,-T,) 

dx - 
= 

m&PUP ac,U,P, 
(7) 

Similarly the energy equation for the fluid may be 
written as an expression for the change of its tem- 
perature as follows : 

dT,_ nDh,(T, - TJ + 4atiph,a2(TP - TJ 

dx - tigc, r+zmUc g P PB 

= 
nDh,(T,-TJ + 31jl*hp(Tp-T& 

(8) 
m&G ac,UpPp 

In the last equation the first term emanates from the 
heat transfer from the particles to the fluid. The 
second is from the convection through the wall. 

The two film coefficients h, and h, must bc given by 
closure equations. For spherical particles in a fluid the 
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standard expression for the heat transfer from spheres 
is taken as follows [ 151: 

h, = ; (2+0.6Rei.5 PrO.33). 

The heat transfer coefficient h, in the absence of 
particles is given by the Dittus-Boelter expression 

h, = 0.023%Re”.’ Pro 4. (10) 

This expression is modified by the presence of the 
particles in the flow. Of all the modifications to the 
empirical equation suggested in the literature the one 
derived by Pfeffer et al. [7] from a variety of other 
expressions, seems to represent more adequately the 
effect of the solids in the increase of the wall to gas 
film coefficient. This expression is 

h, = 0.023~Re”~RPro~4 1+4ReU”ti*~ . 
> 

(11) 

In the above expression the increase of h, is due to 
the modification of the flow variables for the gas and 
not to any particle with wall interactions. 

DIMENSIONLESS FORM OF EQUATIONS 

The conservation equations may be written in 
dimensionless form by dividing them with appropriate 
variables. For the latter, the fluid properties (p, k, cg, 
p,), the initial temperature difference AT and the fluid 
velocity U based on the final equilibrium density, have 
been chosen here. This fluid velocity is given by 

(12) 

where pa is evaluated at the final (equilibrium) fluid 
temperature. 

Thus, equations (la), (1 b), (2b), (7) and (8) become 

&(@Q = 4E: (13) 

& (p,*U;) = -4E,* (14) 

x (1 +0.15Re,0.687) (15) 

(16) 

and 

dT: 4Nu 

dx* 
-RePr(TZ-T2+;z 

x (gg) (T,*- Ta. (17) 

In the above equations the dimensionless groups 
Nu, Re and Pr refer to the fluid phase and have their 
usual meaning. Re, and Nu, refer to the particles and 
are defined according to equations (5) and (9). The 
longitudinal distance x is made dimensionless with 
respect to the pipe diameter D. Equations (13b(17) 
highlight the dimensionless groups that play impor- 
tant roles in the convective heat transfer of suspension 
flows. Among these groups are the property ratios 
(c,/c,, pJpg, etc.), the slip ratio (Uy Uz or U$U,) and 
the ratio of characteristic dimensions of the pipe to 
particle (D/2a). 

If the fluid is a gas then its density may be given 
by an equation of state. In particular if the gas is 
considered an ideal gas its density will be inversely 
proportional to the temperature (given that pressure 
changes are extremely small in pipe flows, when com- 
pared with the absolute pressure of the gas). Then, 
the ratio of densities may be written as 

!L !yP 0 * - 
PS Pg 

T: (18) 

where the term in parenthesis with the asterisk is the 
density ratio at the final gas temperature and T,* cor- 
responds to the thermodynamic temperature of the 
gas made dimensionless. 

In the absence of sublimation, condensation or any 
other form of phase change, equations (13) and (14) 
are considerably simplified and yield the velocity of 
the fluid and the concentration of solids. Also, when 
the coefficients of equations (15t( 17) are constant 
(flow of a particle in an infinite domain where trans- 
port processes do not affect the gas properties) one 
may integrate analytically these equations. The solu- 
tions obtained are relaxation solutions for the velocity 
and the temperature of the particles which approach 
asymptotically the velocity and temperature of the 
carrier fluid. 

SUSPENSION FLOW PAST A TEMPERATURE 

STEP 

As the first application of the subject of heat trans- 
fer in suspension flows we consider the flow where the 
wall temperature undergoes a step from T, to T2, 
where T, > T,. According to the assumption about 
radiation heat transfer, the temperature difference 
AT = T,- T, cannot be extremely high. We also 
assume that there is no phase change in the flow and 
that the fluid is an ideal gas the density of which 
behaves in the manner described by equation (18). 
The initial conditions of the flow are that gas and solid 
particles are in thermal and mechanical equilibrium. 

As the suspension enters the domain of the higher 
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FIG. 1. Temperatures of gas and solid particles and velocity ratio vs the distance from the origin. 
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FIG. 2. Particle temperature for different sizes. 

temperature Tz, the gas is heated up and accelerates. 
The solid particles are in turn heated by the gas and 
they are accelerated. The temperature and velocity of 
the particles are always lagging behind those variables 
of the gas (for T, > T,). Equations (15t(17) describe 
the behaviour of the gas stream and the solid particles. 
These equations are solved numerically by a step-by- 
step method. The computational results are shown in 
the following figures. 

Figure 1 shows the evolution of temperatures of the 
gas and solid particles in the pipe after the step of 
temperature has been applied. The results are for a 
Reynolds number of the gas of 20 000, Prandtl number 
of 0.7, loading of 7 and ratio of pipe to particle diam- 
eters of 25. The temperatures are made dimensionless 
by subtracting T, and dividing by AT. Thus 

T,*= 
Tg-Z-1 
Tz-T; 

(19) 

The low value of the D/2a ratio was chosen in order to 
highlight the thermal and mechanical non-equilibrium 
which characterizes the flow of the two phases. It may 
be seen that for the first 400 diameters of the flow the 
temperatures of the two phases differ by more than 
20% and that the slip ratio is greater than 1.2. It is 
obvious that as the flow progresses the mixture will 
arrive asymptotically at an equilibrium position with 
the solids having obtained the temperature and vel- 
ocity of the gas. 

Figure 2 shows the effect of the dimension ratio 

D/2a on the temperature of the solids Tz. It is evident 
that as the particle diameter decreases the solid par- 
ticles attain thermal equilibrium with the gas much 
faster. Actually, when D/2a = 500 the values T: and 
T,* are always within 4% and the slip ratio is never 
more than 1.05. In this case the gas-solid mixture 
flows in relative thermal and mechanical equilibrium. 
This figure is drawn for Re = 20 000, m* = 3, Pr = 0.7 

and pp/pg = 1000. 
The effect of the loading ratio m* on the evolution 

of the solids temperature is shown in Fig. 3. The flow 
conditions are Re = 20000, Pr = 0.7, pp/pe = 1000 
and cg/cp = 2. The pipe to particles diameter ratio is 
25, because this case presents more interest (since 
the gas and particle temperatures differ considerably). 
The suspensions of higher loading take a longer time 
to heat up. This is expected, given that these sus- 
pensions contain a great deal more material, which is 
to be heated. 

If one were to use suspensions as a heat transfer 
medium the total transfer per unit length is of impor- 
tance. For this purpose we estimate the heat trans- 
ferred to the suspension when the solid particles have 
reached T,* = 0.8 and define the following figure of 
merit for the pipe : 

=&(~:f,h*:T;). (20) 
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FIG. 3. Particle temperatures for different loadings (coarse size particles). 
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FIG. 4. Heat convected vs loading for different particle sizes. 

This quantity is an expression of the heat transferred 
to the gas-solids mixture until the point when the 
solids obtain 80% of the imposed temperature differ- 
ence. Figure 4 depicts Q*/x* for various loading ratios 
and pipe to particle diameter ratios. It is evident that 

at low D/2a the heat transfer characteristics of the 
mixture are poor mainly because the large spheres 
take a long time to be heated. However, there is an 
improvement in this figure of merit when D/2a is high. 
This is because the particles absorb some of the heat 
from the gas and, therefore, keep it cooler; thus the 
temperature difference between the wall and the gas 
is high and heat enters more readily in the pipe. A 
mixture of gas and small particles is obviously a good 
heat transfer medium, its other disadvantages not 
withstanding. 

Figure 5 shows the effect of the Reynolds number 
on the heat transferred per unit length of pipe. This 
figure is for cJc, = 2 and Pr = 0.7. It can be seen 

that Q*/x* decreases with increasing Re. This may be 
misleading because of the way Q becomes dimen- 
sionless (by dividing with mg cp AT). When everything 
else is equal, a Reynolds number of 50000 signifies 
2.5 times more mass of gas than a Reynolds number 
of 20 000. Thus, if one were to use a common denomi- 
nator for both sets of curves, those for Re = 50000 
would have been multiplied by a factor of 2.5 and, 

hence, they would be above the corresponding curves 
for Re = 20000. A glance at both Figs. 5 and 4 also 
proves that Q*/x* is higher when the specific heat of 
the solids is lower, a fact which can be deduced from 
equation (16). 

INTRODUCTION OF HOT PARTICLES IN A 

COLD GASEOUS STREAM 

The second application we consider is the injection 
of solid particles at a high temperature Tz into a gas 
stream at temperature T, with the walls of the pipe 
maintained at constant temperature T,. The solids are 
injected at lower velocity (slip = 5) into the pipe, mix 
with the gas and get cooler. The gas is heated up by 
the solids initially and subsequently cools off because 
it is in contact with the colder wall. 

This physical situation is depicted in Fig. 6 which 

is drawn for Re = 20000, Pr = 0.7 and c,/c, = 2. It 
can be seen that initially the temperature of the gas 
increases substantially, while that of the particles 
drops fast. This happens because at the injection point 
of the solids, gas and particles mix under almost adia- 
batic conditions (very short length of pipe for the heat 
to be convected out). At later stages, when the length 
of the pipe is sufficient to allow enough heat to escape, 
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FIG. 5. Heat convected vs loading for two Reynolds numbers. 
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FIG. 6. Particle and gas temperatures vs distance from the origin for the case of cooling of particles. 

FIG. 7. Heat convected vs loading for two sizes of particles. 

the two phases approach thermal equilibrium. The 
results for the two loadings indicate that the initial 
rise in the gas temperature is more pronounced when 
the loading is higher, for reasons which become appar- 
ent. 

The total heat conveyed from the walls of the pipe 
per unit length of pipe is depicted in Fig. 7. Again the 
ratio Q*/x* is evaluated when the temperature of the 
particles reaches 80% of its final value. This figure of 
merit increases with m* since the gas becomes hotter. 

CONCLUSION 

A model of fluid-solid suspension flow with heat 
transfer has been presented. The model treats the two 

phases separately and allows for thermal and mech- 
anical non-equilibrium. The dimensionless form of 
the equations is derived and the groups that influence 
the heat and momentum exchange between the two 
phases are pointed out. 

The flow and heat transfer equations are solved for 
two cases: (a) the flow of the suspension past 
a temperature step and (b) the injection of hot par- 
ticles into a cold stream. In both cases it is seen 
that the thermal and mechanical non-equilibrium be- 
tween the phases becomes more pronounced when 
larger particles are involved or when the loading is 
higher. 

Among the other parameters of the suspensions 
examined are the heat transfer per unit length and the 
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ECOULEMENTS FLUIDE-SOLIDE HORS EQUILIBRE THERMIQUE ET 
HYDRODYNAMIQUE 

R&nr&Un modtle est developpe pour d&ire le comportement des particules dans des ecoulements 
d’air. Les equations de l’ecoulement des particules et du transfert thermique sont donndes sous forme 
adimensionnelle. On traite deux applications pratiques : (a) I’tcoulement subit un echelon de temperature 
et (b) l’injection de particules chaudes dans un tube canalisant un gaz. On calcule dans les deux cas les 
differences de vitesse et de temperature pour le gaz et le solide et on determine l’influence de plusieurs 
groupes adimensionnels (comme les nombres de Reynolds, les rapports de charge et de dimension) sur ces 
deux grandeurs. On trouve que les effets de non-bquilibre sont accent&s lorsque des plus grosses particules 

sont dans le melange 

FLUID-FESTKGRPER-STRdMUNG BE1 THERMISCHEM 
HYDRODYNAMISCHEM UNGLEICHGEWICHT 

UND 

Zusannnenfassung-Es wird ein Model1 entwickelt, urn das Verhalten von Partikeln in Luftstrijmen zu 
beschreiben. Die Gleichungen fur die Partikelstriimung und den Warmetransport werden in dimen- 
sionsloser Form angegeben. Es werden zwei praktische Anwendungsfalle fiir Suspensionsstromungen 
untersucht : (a) sprunghafte Temperaturerhdhung und (b) Einbringen von heil3en Partikeln in eine von 
Gas durchstriimte Rohrleitung. In beiden Fallen werden die momentanen Geschwindigkeits- und Tem- 
peraturunterschiede zwischen Gas und Partikeln berechnet und der EinfluB verschiedener dimensionsloser 
Kennzahlen (wie Reynolds-Zahl, Belastungs- und Geometrie-Verhaltnissen) auf diese beiden GraBen 
untersucht. Es ergibt sich, dal3 Ungleichgewichtseffekte mit wachsender PartikelgroBe in der Mischung 

zunehemen. 

TEgEHAE B3BECER B YCJIOBMIIX TEHJIOBOfi M FH&POflHHAMB=IECKO~ 
HEPABHOBECHOCTW 

hmoTams-npennoxetia MoAeAb arm onncatim noBeAeHm qacTm B noToKe BosAyxa. YpaBHeHm 

nBmKeHm ~aCTHll &i Tennoo6MeHa npHBOAJTCn B 6e3pa3MepHOM BHAe. ,QaHbl peuxefiHn AAn AByX 

CJIy'iaeB ,lpaKTHWCKOrO BCnOAb30BaHHR TeqeHHl B3BeCeii: a,Te'leHHe 38 TeMllepaTypHblM CKBSKOM H 6, 
~~y~ropn~x qacT~A~Tpy6ycra30M. Bodoax CAy~allXpaWUiTbIB~TcnH3MeiieHHnAOK~bHO~c~o- 

pOCTA H TeMIlepaTypbl ra3a H TWpAbIX QWTHII, a TBKXCe BJIHKHtie HeCKOJlbKHX 6e3pa3htepHbIX KpHTepHeB 
(TBKHX KSLK ‘iHCJIa Pei-iHOAbACa, OTHOUleHHe HarpyJOK A pa3MepOB). HaiiAeHO, ST0 C YBeAHqeHHeM 

pa3Mepa qacTHABnHnHtieHepaBHoBeCHbIx3@eKT08n CM~CH ycmHBaeTcn. 


